ACCESSING NEW CHEMICAL SPACE THROUGH FLOW CHEMISTRY

Judit Takács

254th American Chemical Society National Meeting & Exposition
20 August, 2017, Washington DC

http://www.cominnex.com
ComInnex Overview

• 25 years experience (as ComGenex/AMRI/ComInnex) in working with top pharma companies from USA-Europe-Japan

• A drug discovery service provider for the Pharma, biotech and agrochemical industries:
 - Screening compound libraries
 - Novel scaffold design
 - FTE based custom chemistry and medchem
 - Fixed fee custom synthesis

• Unique combination of technologies and know-how
 - Technology-enabled chemistries
 - Integrated production IT system
 - High throughput chemistry and purification

• Mutually beneficial partnership with ThalesNano

http://www.cominnex.com
Novel Technologies and Applications

- R&D award winning proprietary technology
- Wide range in terms of temperature and pressure (-70 to +1000 °C and from vacuum to 400 bar)
- Lithiation, hydrogenation, C-C and C-N cross coupling, oxidation, pyrolysis, cyclization, ozonolysis etc.

http://www.cominnex.com
I. Ring saturation

Escape from Flatland1 – Synthesis of Molecules with High fsp3 Skeletons

• Too many aromatic rings cause higher attrition rate in development \rightarrow significant interest in molecules with lower aromaticity
• Higher fsp3 \rightarrow better physical chemical properties \rightarrow better chance in development
• ComInnex has the integrated technology, design platform and chemical know-how to perform these transformations

1 J. Med. Chem. \textbf{2009}, 52, 6752-6756.
H-Cube® vs. Autoclave

- **Continuous**
- Automation is easy
- High throughput rate
- \(H_2 \) is generated inside the apparatus, in situ

- **Batch**
- Automation is difficult
- Low throughput rate
- Safety issues

1. Chemo- and regioselectivity

BATCH: 100% conversion, low yield, side products

H-CUBE: 100% conversion, 100% selectivity; desired product

BATCH: >90% conversion, selective, but B is the main product

H-CUBE: 100% conversion; selective; A is the main product
2. Diastereoselectivity

- Several test reactions completed – large expertise
- Successful FTE project covering different types of disubstituted pyridines
- Several libraries designed with different R_1 and R_2 – cca 1000 piperidines produced

Pd/C: reaction is trans selective or major isomer is the trans isomer
Ru/C: reaction is cis selective or major isomer is the cis isomer
PtO$_2$: reaction is cis selective or major isomer is the cis isomer
Pd/C: reaction is cis selective or major isomer is the cis isomer
PtO$_2$, Rh/alumina,Ru/C, and Ru/alumina: similar selectivity
3. Fluorous Fragments

CF₃ on the pyridine ring

distant F and CF₃

F on the pyridine ring

Parameter optimization: catalyst, temperature ↑, contact time ↓
Selectivity 1:1 → 9:1
II. Cyclization in Phoenix Reactor

- Up to 450 °C temperature capacity
- Perform reactions in a loop homogeneously or use different cartridges for heterogeneous systems
- Perform chemistries not possible in a standard lab circumstances
- Slow reactions in seconds

Novel Heterocycle Synthesis

\[
\text{NHNH}_2 + \text{C}_8\text{H}_8\text{O} \xrightarrow{\text{AcOH/2-propanol (3:1) (0.5M)}} 200 \, ^\circ\text{C}, 75 \text{ bar}, 5 \text{ mL/min} \rightarrow \text{Product}\n\]

Isolated yield: 51 %
NMR purity: >95 %
Production of Imidazopyridine, -pyrazine and -pyrimididine Derivatives

\[\text{Production of Imidazopyridine, -pyrazine and -pyrimididine Derivatives} \]

A: C, N
R₁: H, X, CO₂Me
R₂: Ph, CO₂Et

\[\text{Chemical structures and reaction scheme} \]

Batch

Phoenix reactor

http://www.cominnex.com
III. Cyclization in Flash Reactor Plus

- The reaction stopped at the first elementary step in the Phoenix reactor
- Compound 3 is an insoluble precipitate → instrument blocked
- Decomposition above 250 °C

VFP conditions are suitable for thermal cyclisation
- Extreme high temperature (1000 °C)
- Low pressure (10^{-3} bar)
- Short contact time (1 s)
- First result → promising: over 30% conversion
Conclusions

Flow
- Wide parameter space, effective convection
- Quick optimization and short reaction time
- Higher conversion (for product)
- Clean reaction mixtures
- Acceptable yields
- Easy to scale up
- Clean and safe practice

Batch
- Limitations in temperature
- Long reaction time
- Heat transfer and stirring difficulties
- Lower conversion (sometimes 0)
- Complex mixture, difficult purification
- Lower yields
- Safety issues

Key Intermediate Synthesis
- Traditional chemistry steps

„Know-how“
- Technology-enabled step

Parallel Chemistry
- Library synthesis with proprietary scaffold
• The implementation of the flow technology (provided by ThalesNano) and our cheminformatics knowledge allows us to explore new chemical space

• Diverse chemical problems in batch → resolved in flow

• Flow-enabled compound design and synthesis platform promotes the diversity of our products

Do not hesitate to contact us either online or at our booth: 1321
Thank you for your kind attention!